Menu
Google scientist flags data-saving AI advance

Google scientist flags data-saving AI advance

The proposed AI approach could be applied to speech and video recognition, as well as images

Google's Geoffrey Hinton, an artificial intelligence pioneer, has outlined an advance in the technology that improves the rate at which computers correctly identify images and with reliance on less data.

Hinton, an academic whose previous work on artificial neural networks is considered foundational to the commercialisation of machine learning, detailed the approach, known as capsule networks, in two research papers posted anonymously on academic websites last week.

The approach could mean computers learn to identify a photograph of a face taken from a different angle from those it had in its bank of known images. It could also be applied to speech and video recognition.

"This is a much more robust way of identifying objects," Hinton told attendees at the Go North technology summit hosted by Alphabet’s Google, detailing proof of a thesis he had first theorised in 1979.

In the work with Google researchers Sara Sabour and Nicholas Frost, individual capsules - small groups of virtual neurons - were instructed to identify parts of a larger whole and the fixed relationships between them.

The system then confirmed whether those same features were present in images the system had never seen before.

Artificial neural networks mimic the behavior of neurons to enable computers to operate more like the human brain.

Hinton said early testing of the technique had come up with half the errors of current image recognition techniques.

The bundling of neurons working together to determine both whether a feature is present and its characteristics also means the system should require less data to make its predictions.

"The hope is that maybe we might require less data to learn good classifiers of objects, because they have this ability of generalising to unseen perspectives or configurations of images," said Hugo Larochelle, who heads Google Brain's research efforts in Montreal.

"That's a big problem right now that machine learning and deep learning needs to address, these methods right now require a lot of data to work," he said.

Hinton likened the advance to work two of his students developed in 2009 on speech recognition using neural networks that improved on existing technology and was incorporated into the Android operating system in 2012.

Still, he cautioned it was early days.

"This is just a theory," he said. "It worked quite impressively on a small dataset" but now needs to be tested on larger datasets, he added.

Peer review of the findings is expected in December.

(Reporting by Alastair Sharp; Editing by Andrew Hay)


Follow Us

Join the newsletter!

Error: Please check your email address.

Tags Googleartificial intelligenceAIGeoffrey Hinton

Featured

Slideshows

Looking back at the top 15 M&A deals in NZ during 2017

Looking back at the top 15 M&A deals in NZ during 2017

In 2017, merger and acquisitions fever reached new heights in New Zealand, with a host of big name deals dominating the headlines. Reseller News recaps the most important transactions of the Kiwi channel during the past 12 months.

Looking back at the top 15 M&A deals in NZ during 2017
Kiwi channel closes 2017 with After Hours

Kiwi channel closes 2017 with After Hours

The channel in New Zealand came together to celebrate the close of 2017, as the final After Hours played out in front of a bumper Auckland crowd.

Kiwi channel closes 2017 with After Hours
Meet the top performing HP partners in NZ

Meet the top performing HP partners in NZ

HP honoured leading partners across the channel at the Partner Awards 2017 in New Zealand, recognising excellence across the entire print and personal systems portfolio.

Meet the top performing HP partners in NZ
Show Comments