Menu
Quantum computing, here we come: A qubit data bus may soon be possible

Quantum computing, here we come: A qubit data bus may soon be possible

A research breakthrough could put much faster computing within reach

Transporting information from one place to another is a key part of any computing platform, and now researchers have figured out a way to make it possible in the quantum world.

To prove their point, they demonstrated what's known as perfect state transfer on a photonic qubit that's entangled with another qubit at a different location.

In traditional computing, numbers are represented by either 0s or 1s. Quantum computing relies on atomic-scale quantum bits, or “qubits,” that can be simultaneously 0 and 1 -- a state known as superposition. Quantum bits can also become "entangled" so that they are dependent on one another even across distances.

Today's microprocessors use data buses to route bits of information to and from memory. Transferring quantum information is trickier, because quantum states are so fragile -- try to move a qubit, and the quantum state may change.

To test out their approach, the researchers in this study turned to particles of light. Hailing from RMIT University in Australia, Italy's National Research Council, and China's South University of Science and Technology, the scientists used a technique by which quantum information is encoded in such particles, also known as photons.

Using an experimental setup with multiple "waveguide" tubes, they tried to relocate the data among locations while achieving perfect state transfer, preserving the delicate quantum state of entanglement. In their tests, the researchers were able to perform the procedure while preserving the encoded quantum state with an average fidelity of 97.1 percent.

Ultimately, the discovery could pave the way for a quantum data bus and bring quantum computing closer to reality, they said. Quantum computers could have much higher performance than today's systems.

"Quantum computers promise to solve vital tasks that are currently unmanageable on today's standard computers," said Alberto Peruzzo, director of RMIT's Quantum Photonics Laboratory. "It could make the critical difference for discovering new drugs, developing a perfectly secure quantum Internet and even improving facial recognition.''

The research was published Monday in Nature Communications.


Follow Us

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Brand Post

Featured

Slideshows

Reseller News welcomes industry figures for 2019 Hall of Fame lunch

Reseller News welcomes industry figures for 2019 Hall of Fame lunch

Reseller News welcomed 2018 inductees - Chris Simpson, Kendra Ross and Phill Patton - to the third running of the Reseller News Hall of Fame lunch, held at the French Cafe in Auckland. The inductees discussed the changing landscape of the technology industry in New Zealand, while outlining ways to attract a new breed of players to the ecosystem. Photos by Gino Demeer.

Reseller News welcomes industry figures for 2019 Hall of Fame lunch
Upcoming tech talent share insights at inaugural Emerging Leaders Forum 2019

Upcoming tech talent share insights at inaugural Emerging Leaders Forum 2019

The channel came together for the inaugural Reseller News Emerging Leaders Forum in New Zealand, created to provide a program that identifies, educates and showcases the upcoming talent of the ICT industry. Hosted as a half day event, attendees heard from industry champions as keynoters and panelists talked about future opportunities and leadership paths and joined mentoring sessions with members of the ICT industry Hall of Fame. The forum concluded with 30 Under 30 Tech Awards across areas of Sales, Entrepreneur, Marketing, Management, Technical and Human Resources. Photos by Gino Demeer.

Upcoming tech talent share insights at inaugural Emerging Leaders Forum 2019
Show Comments