Menu
New battery could reduce phone charging to just one minute

New battery could reduce phone charging to just one minute

Researchers say the aluminium-ion battery is safer and cheaper than lithium ion

Researchers at Stanford University have developed a new battery that can be recharged in about a minute and is safer than the lithium ion cells used in everything from smartwatches to passenger jets.

It could one day mean super-fast charging of smartphones and other gadgets -- and interestingly, a major step in the development came largely by chance.

The battery uses aluminum-ion cells, which are much cheaper than lithium-ion. They're also high performance and are not prone to bursting into flames or exploding when damaged, as lithium ion batteries can do.

"Our new battery won't catch fire, even if you drill through it," said Dai Hongjie, a professor of chemistry at Stanford. His work is detailed in the April 6 issue of Nature.

Research on aluminum-ion batteries isn't new but a sticking point to a commercial product has always been finding suitable materials for the anode and cathode that maintain their performance over repeated charge and discharge cycles.

"We accidentally discovered that a simple solution is to use graphite," said Dai.

The result is a battery that can survive 7,500 charging cycles without losing performance. That's well over the roughly 100 cycles that other prototype aluminum-ion batteries can last at present and also more than the typical 1,000 cycles from current lithium-ion batteries, according to the university.

The prototype developed by Dai's team combines an aluminum anode with a graphite cathode in a pouch of an ionic liquid electrolyte, which means the battery is also flexible. That's an attractive feature for electronics companies, looking to squeeze batteries into tiny open space inside products, and even car makers, which want to layer batteries around curves inside the body of automobiles.

So what's the catch?

The current prototype produces about 2 volts, which is less than the 3.6 volts from a conventional lithium-ion battery, and its energy density -- the amount of electrical energy stored in a given unit of mass -- is also lower. The aluminum-ion battery developed by Standard has an energy density of 40 watts per kilogram compared to between 100 and 260 watts per kilogram for lithium ion.

But the Stanford team is optimistic that these problems can be overcome.

"Improving the cathode material could eventually increase the voltage and energy density," said Dai. "Otherwise, our battery has everything else you'd dream that a battery should have: inexpensive electrodes, good safety, high-speed charging, flexibility and long cycle life. I see this as a new battery in its early days. It's quite exciting."

Martyn Williams covers mobile telecoms, Silicon Valley and general technology breaking news for The IDG News Service. Follow Martyn on Twitter at @martyn_williams. Martyn's e-mail address is martyn_williams@idg.com


Follow Us

Join the newsletter!

Error: Please check your email address.

Tags ComponentsStanford UniversityBatteries / fuel cells

Featured

Slideshows

Looking back at the top 15 M&A deals in NZ during 2017

Looking back at the top 15 M&A deals in NZ during 2017

In 2017, merger and acquisitions fever reached new heights in New Zealand, with a host of big name deals dominating the headlines. Reseller News recaps the most important transactions of the Kiwi channel during the past 12 months.

Looking back at the top 15 M&A deals in NZ during 2017
Kiwi channel closes 2017 with After Hours

Kiwi channel closes 2017 with After Hours

The channel in New Zealand came together to celebrate the close of 2017, as the final After Hours played out in front of a bumper Auckland crowd.

Kiwi channel closes 2017 with After Hours
Meet the top performing HP partners in NZ

Meet the top performing HP partners in NZ

HP honoured leading partners across the channel at the Partner Awards 2017 in New Zealand, recognising excellence across the entire print and personal systems portfolio.

Meet the top performing HP partners in NZ
Show Comments