Menu
Stanford breakthrough could make better chips cheaper

Stanford breakthrough could make better chips cheaper

A new process reduces the cost of making gallium arsenide chips and solar cells

Researchers at Stanford University have come up with a new way to make chips and solar panels using gallium arsenide, a semiconductor that beats silicon in several important areas but is typically too expensive for widespread use.

For several decades, silicon has been the go-to semiconductor for electronics. It's abundant and cheap, and manufacturing processes are well understood, but it's not always the best choice.

Electrons move faster through gallium arsenide than through silicon, which makes it better suited for chips handling data at very high speeds or high-frequency radio signals. Solar panels based on gallium arsenide are more efficient than silicon panels at converting light to electricity.

Gallium arsenide is also pricey. An 8-inch disc on which chips and panels are made costs about US$5,000, versus just $5 for a similar silicon wafer, said Aneesh Nainani, who teaches semiconductor manufacturing at Stanford.

The new manufacturing method won't make the wafer any cheaper, but it does allow it to be reused roughly 50 to 100 times, dramatically reducing the per-chip cost and opening up gallium arsenide for wider use.

Here's how it works:

Researchers start with a gallium arsenide wafer and apply a thin layer of a disposable material. On top of that, they apply a layer of an infrared-absorbing material, and then another disposable layer. Finally, on top of these three layers, a thin gallium arsenide layer is deposited. Circuits are built on this final layer, just as they normally are built directly on the wafer.

Next, the uppermost disposable layer is etched so that the many circuits become individual chips. Then, an infrared laser blasts the infrared-absorbing layer, breaking it down so the chips can be separating from the underlying wafer. The remaining wafer is cleaned and is then ready for the next batch of chips.

The process is shown in a YouTube animation from Stanford.

Because the resulting chips are made out of a thin layer of gallium arsenide rather than a full wafer, they are cheaper to produce. As a side benefit, they are also flexible.

Stanford has applied for patents on the process and is already talking to semiconductor chip makers about licensing it for testing and eventual use in commercial production.

Martyn Williams covers mobile telecoms, Silicon Valley and general technology breaking news for The IDG News Service. Follow Martyn on Twitter at @martyn_williams. Martyn's e-mail address is martyn_williams@idg.com

Subscribe here for up-to-date channel news

Follow Us

Join the New Zealand Reseller News newsletter!

Error: Please check your email address.

Tags ComponentsprocessorsStanford Universitymemory

Featured

Slideshows

StorageCraft celebrates high achievers at its inaugural A/NZ Partner Awards

StorageCraft celebrates high achievers at its inaugural A/NZ Partner Awards

Revealed at a glitzy bash in Sydney at the Ivy Penthouse, the first StorageCraft Partner Awards locally saw the vendor honour its top-performing partners with ASI Solutions, SMBiT Pro, Webroot, ACA Pacific and Soft Solutions New Zealand taking home the top awards. Photos by Maria Stefina.

StorageCraft celebrates high achievers at its inaugural A/NZ Partner Awards
Kiwi resellers make a splash on Synnex and Lenovo RotoVegas road trip

Kiwi resellers make a splash on Synnex and Lenovo RotoVegas road trip

​Synnex and Lenovo hosted 18 resellers for an action-packed weekend adventure in RotoVegas, taking in white water rafting on the Kaituna River, as well as quad biking and dinner at Stratosfare​, overlooking Lake Rotorua at the top of Mount Ngongotaha​. Photos by Synnex.

Kiwi resellers make a splash on Synnex and Lenovo RotoVegas road trip
Show Comments