3D graphene-like material could lead to super electronics

3D graphene-like material could lead to super electronics

The material offers vastly higher electron transfer rates, promising better-performing electronics

Researchers have discovered a material with a similar electronic structure to graphene that can exist in three dimensions and could lead to faster transistors and more compact, higher capacity hard drives.

The material, a form of the chemical compound sodium bismuthate, is called three-dimensional topological Dirac semi-metal (3DTDS).

An international team led by scientists from Oxford University, Diamond Light Source, Rutherford Appleton Laboratory, Stanford University and Berkeley Lab's Advanced Light Source discovered 3DTDS.

The researchers said the material could be used to make a hard drive that is higher density, faster and uses less energy, "for example turning a 1 terabyte hard drive into a drive that can store 10 terabytes within the same volume."

Graphene is a strong, conductive and flexible material that is made up of a single layer of carbon atoms connected in a pattern of hexagonal shapes. Graphene is stronger than a diamond and conducts electricity better than any previous material. But Graphene is also two dimensional, meaning it is produced in flat sheets about one million times thinner than a sheet of paper.

Unlike Graphene, 3DTDS allows electrons to be assembled in a collective to flow in all directions. More importantly, the electrons on the surface of the material remember their magnetic spin -- a property called magnetoresistance -- that allows data to be stored by reversing the polarity of a bit from positive to negative and vice versa.

Scientists have long searched for a natural 3D counterpart to 2D graphene, and while researchers have theorized about a 3D material with the same properties, the discovery confirms that the material exists. The research paper was published last week in the journal Science.

"The 3DTDS we have found has a lot in common with graphene and is likely to be as good or even better in terms of electron mobility - a measure of both how fast and how efficiently an electron can move through a material," Yulin Chen, of Oxford University's Department of Physics, said in a statement.

"In typical Giant Magnetoresistance Materials (GMR), the resistance changes by a few tens of percent and then saturates, but with 3DTDS it changes 100s or 1000s of percent without showing saturation with the external magnetic field," Chen said.

Now that researchers have proven the highly conductive 3D material exists, Chen said the race is on to find more such materials and their applications, "as well as other materials with unusual topology in their electronic structure."

Follow Us

Join the newsletter!


Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags AppleData storagehardware systemsStanford UniversityEmerging TechnologiesOxford

Brand Post

How to become the best IT MSP

This article provides guidance for managed service providers (MSPs) that want to grow their business. It is also useful for any IT service provider looking to move from the break-fix model to managed IT services.



Reseller News Innovation Awards 2019: meet the winners

Reseller News Innovation Awards 2019: meet the winners

Reseller News honoured the standout players of the New Zealand channel in front of more than 480 technology leaders in Auckland on 23 October, recognising the achievements of top partners, emerging entrants and innovative start-ups.

Reseller News Innovation Awards 2019: meet the winners
Malwarebytes shoots the breeze with channel, prospects

Malwarebytes shoots the breeze with channel, prospects

A Kumeu, Auckland, winery was the venue for a Malwarebytes event for partner and prospect MSPs - with some straight shooting on the side. The half-day getaway, which featured an archery competition, lunch and wine-tasting aimed at bringing Malwarebytes' local New Zealand and top and prospective MSP partners together to celebrate recent local successes, and discuss the current state of malware in New Zealand. This was also a unique opportunity for local MSPs to learn about how they can get the most out of Malwarebytes' MSP program and offering, as more Kiwi businesses are targeted by malware.

Malwarebytes shoots the breeze with channel, prospects
Show Comments