Thumb PC uses Google software to give computer vision to robots and drones

Thumb PC uses Google software to give computer vision to robots and drones

Movidius’ Fathom Neural Compute Stick resembles an Intel Compute Stick, but is designed for vision processing

A new USB stick computer uses Google's machine-learning software to give drones and robots the equivalent of a human eye, and add new smarts to cameras.

Movidius’ Fathom Neural Compute Stick isn't your conventional PC. It is instead designed to analyze pixels and provide the right context for images.

Fathom provides the much-needed horsepower for devices like drones, robots and cameras to run computer vision applications like image recognition. These devices alone typically don't have the ability to run computer vision applications.

Fathom uses an embedded version of Google's TensorFlow machine learning software for vision processing. The device can be plugged into the USB port of a device or a developer board like Raspberry Pi, which in turn can power a drone or robot. It needs a 64-bit Linux OS and 50MB of hard drive space.

With a Fathom stick, simple robots or drones could do a lot more than they typically can do now. For example, a drone could use the Fathom to avoid obstacles and automatically navigate to specific locations. Or when riding a bike, a helmet camera could automatically start recording video after identifying a certain object like a street sign.

It could also bring a higher level of situational awareness to IP-based home security systems. Connected cameras are expected to be able to differentiate between humans and animals, with the computing handled by a Fathom stick plugged in the USB port of a home security hub.

Other applications for Fathom include 3D modeling and scanning, immersive gaming, augmented reality and gesture recognition.

In a way, the Fathom is a smaller and more power-efficient version of the Nvidia Jetson TX1 developer board, which is also targeted at robots, drones, self-driving cars and Internet of Things devices. Fathom is like a mobile equivalent of the TX1 -- it doesn't have the raw horsepower, but it's very fast at doing specific vision recognition tasks while consuming less power.

Fathom was described as a "discrete deep learning accelerator," by Jack Dashwood, the marketing communications director at Movidius.

Fathom is based on the Myriad 2 processor already in DJI’s flagship Phantom 4 autonomous drone, which can sense obstacles. Dashwood couldn't say if Fathom could be plugged directly into products like GoPro.

Movidius estimated the price of Fathom to be under $100. An initial run will ship to researchers, hobbyists and companies that are developing, testing and playing with products. Fathom will become commercially available in the fourth quarter of this year.

Google is a major backer of Movidius' vision processing technology. The Myriad 2 chip will be in an upcoming next-generation deep learning device from Google, Dashwood said. He couldn't comment further about the Google device. Movidius processors have been used in a Google Project Tango tablet. 

Fathom delivers 150 gigaflops of performance while consuming under 1.2 watts of power. The vision processing happens locally; there's no need for devices to connect to cloud services to recognize and identify images, Dashwood said.

Fathom relies on machine-learning to crunch images, and needs to be trained to analyze pixels and provide the right context to images. That entails the creation of rich data sets against which images can be verified. That learning model is usually developed on a PC, and then transferred to work with the TensorFlow software stack on the smaller Fathom.

In most cases, there are many pixels that must be analyzed in order to get a complete understanding of an image – for example, when a person is happy, the lips take on a different structure. There's no one way to train Fathom to recognize all images, and  learning models may be different for cameras, drones, robots and self-driving cars.

The creation of the rich data sets needed for image understanding involves steps like classification and labeling of pixels. Fathom uses a combination of algorithms and pixel association to understand images. In machine learning models, sentiment and face recognition capabilities have become fairly common, while distance measurement and simultaneous localization and mapping -- which involves analyzing images to update a map -- remain a challenge, Dashwood said.

Fathom also has 12 vector processors that can be programmed to do a variety of tasks. The computer also has a custom GPU subsystem that is central to vision processing.

Follow Us

Join the New Zealand Reseller News newsletter!

Error: Please check your email address.



Arrow exclusively introduces Tenable Network Security to A/NZ channel

Arrow exclusively introduces Tenable Network Security to A/NZ channel

Arrow Electronics introduced Tenable Network Security to local resellers in Sydney last week, officially launching the distributor's latest security partnership across Australia and New Zealand. Representing the first direct distribution agreement locally for Tenable specifically, the deal sees Arrow deliver security solutions directly to mid-market and enterprise channel partners on both sides of the Tasman.

Arrow exclusively introduces Tenable Network Security to A/NZ channel
Examining the changing job scene in the Kiwi channel

Examining the changing job scene in the Kiwi channel

Typically, the New Year brings new opportunities for personnel within the Kiwi channel. 2017 started no differently, with a host of appointments, departures and reshuffles across vendor, distributor and reseller businesses. As a result, the job scene across New Zealand has changed - here’s a run down of who is working where in the year ahead…

Examining the changing job scene in the Kiwi channel
​What are the top 10 tech trends for New Zealand in 2017?

​What are the top 10 tech trends for New Zealand in 2017?

Digital Transformation (DX) has been a critical topic for business over the last few years and IDC is now predicting a step change as DX reaches macroeconomic levels. By 2020 a DX economy will emerge and it will become the core of what New Zealand industries focus on. From the board level through to the C-Suite, Kiwi organisations must be prepared to think and act digital when the DX economy emerges in 2017.

​What are the top 10 tech trends for New Zealand in 2017?
Show Comments