Menu
Diamonds may be quantum computing's new best friend

Diamonds may be quantum computing's new best friend

It's all about maintaining that crazy little thing called superposition

Paola Cappellaro leads MIT's Quantum Engineering Group. Credit: Jose Mandojana

Paola Cappellaro leads MIT's Quantum Engineering Group. Credit: Jose Mandojana

At the heart of quantum computing is the ability for so-called "qubits," or the atomic-scale building blocks of quantum computers, to inhabit more than one physical state at once. Known as superposition, it's what gives quantum computers their exciting potential.

Superposition can be a real bear to maintain, but this week, MIT researchers announced a new approach developed using synthetic diamonds. Eventually, it could put reliable, working quantum computers within closer reach.

Part of the challenge inherent in quantum computing is maintaining stability. In many other fields that's accomplished via feedback control: With a desired state in mind, researchers measure the current state and make adjustments as necessary to keep the system in line.

The problem in the quantum world is that measurement -- a necessary part of that process -- destroys superposition. So, in this area, researchers traditionally have to make do without the feedback they'd otherwise rely on.

The new research describes a feedback-control system for maintaining quantum superposition that requires no measurement. Instead, it uses what's known as a nitrogen-vacancy center in a diamond.

“Instead of having a classical controller to implement the feedback, we now use a quantum controller,” said Paola Cappellaro, the Esther and Harold Edgerton associate professor of nuclear science and engineering at MIT. “Because the controller is quantum, I don’t need to do a measurement to know what’s going on.”

A pure diamond consists of carbon atoms arranged in a regular latticework structure. If a carbon nucleus is missing from the lattice where one would normally exist, that’s considered a vacancy. If a nitrogen atom takes the place of a carbon atom in the lattice in a position that's adjacent to a vacancy, that’s known as a nitrogen-vacancy (NV) center.

When subjected to a strong magnetic field -- in this case, a permanent magnet positioned above the diamond -- an NV center’s electronic spin can be up, down or a quantum superposition of the two. Therein lies the value for quantum computing.

First, a dose of microwaves puts the NV center's electronic spin into superposition. Then, a burst of radio-frequency radiation puts the nitrogen nucleus into a specified spin state. A second, lower-power dose of microwaves “entangles” the spins of the nitrogen nucleus and the NV center, so that they become dependent on each other.

At that point, the NV qubit could be put to work along with other qubits to perform a computation, but the researchers also administered further microwave exposures to test for errors.

Bottom line? The system allowed an NV-center quantum bit to stay in superposition about 1,000 times as long as it would otherwise. That, in turn, means working quantum computers could be closer than we've thought so far.

A paper describing the work was published this week in the journal Nature.

Follow Us

Join the New Zealand Reseller News newsletter!

Error: Please check your email address.

Tags superpositionquantum computing

Featured

Slideshows

Reseller News launches inaugural Hall of Fame lunch

Reseller News launches inaugural Hall of Fame lunch

Reseller News welcomed 2015 and 2016 inductees - Darryl Swann, Dave Rosenberg, Gary Bigwood, Keith Watson, Mike Hill and Scott Green - to the inaugural Reseller News Hall of Fame lunch, held at the French Cafe in Auckland. The inductees discussed how the channel can collectively work together to benefit New Zealand, the Kiwi skills shortage and the future of the industry. Photos by Maria Stefina.

Reseller News launches inaugural Hall of Fame lunch
Educating from the epicentre - Why distributors are the pulse checkers of the channel

Educating from the epicentre - Why distributors are the pulse checkers of the channel

​As the channel changes and industry voices deepen, the need for clarity and insight heightens. Market misconceptions talk of an “under pressure” distribution space, with competitors in that fateful “race for relevance” across New Zealand. Amidst the cliched assumptions however, distribution is once again showing its strength, as a force to be listened to, rather than questioned. Traditionally, the role was born out of a need for vendors and resellers to find one another, acting as a bridge between the testing lab and the marketplace. Yet despite new technologies and business approaches shaking the channel to its very core, distributors remain tied to the epicentre - providing the voice of reason amidst a seismic industry shift. In looking across both sides of the vendor and partner fences, the middle concept of the three-tier chain remains centrally placed to understand the metrics of two differing worlds, as the continual pulse checkers of the local channel. This exclusive Reseller News Roundtable, in association with Dicker Data and rhipe, examined the pivotal role of distribution in understanding the health of the channel, educating from the epicentre as the market transforms at a rapid rate.

Educating from the epicentre - Why distributors are the pulse checkers of the channel
Kiwi channel reunites as After Hours kicks off 2017

Kiwi channel reunites as After Hours kicks off 2017

After Hours made a welcome return to the channel social calendar last night, with a bumper crowd of distributors, vendors and resellers descending on The Jefferson in Auckland to kickstart 2017. Photos by Maria Stefina.

Kiwi channel reunites as After Hours kicks off 2017
Show Comments