Menu
The surprise power hog for mobile storage: software

The surprise power hog for mobile storage: software

Most of the power consumed by phone and tablet storage is from software, according to a UCSD-Microsoft paper

Flash storage can be a big power consumer in mobile devices, but it's not the flash that sucks up all that energy, it's the software that goes with it, according to researchers from the University of California at San Diego and Microsoft.

Studying built-in storage in an Android smartphone and two Microsoft Surface RT tablets, graduate student Jing Li and his colleagues found that storage consumed more energy than anything else when the devices had their screens off. Though that may not sound important, screen-off time may account for much of the day as consumers carry their devices around. Functions keep running in the background as alerts and other data come down from the network.

Li, who presented the findings Tuesday at the Usenix FAST conference in Santa Clara, California, wasn't surprised at the power demands of native storage. But he was stunned to discover that almost all of that power was consumed by software rather than the underlying hardware.

The storage devices themselves, in this case eMMC (embedded multimedia card) flash chips, only took up about 1 percent of the energy devoted to storage, the UCSD team found. The other 99 percent was consumed by elements of the software stack, including the runtime system, the file system and encryption functions.

There are good reasons to include those processes. For example, encryption is vital in mobile devices because they're especially vulnerable to theft and loss, Li said. But the way encryption is performed in them places a heavy burden on the battery.

"Even though there are some application-specific components inside the mobile device that can help you to deal with encryption, the throughputs of those components are too low to meet the requirements of the storage system," Li said. "Because of that, the designers of the storage system still decide to use the general-purpose CPU to perform the encryption tasks."

In one set of tests, the team compared power consumption between devices with and without encryption. It showed that a storage subsystem with encryption claimed more than twice the share of the device's power consumption compared to one without, Li said.

One reason is that most devices use full-disk encryption even though some of the data, such as OS files, application binaries and some media purchased online, may not need it, he said. As an alternative, the study suggested using a partially encrypted file system. Tools such as Encrypting File System on Windows and GNU Privacy Guard could provide this capability, which would let app developers fine-tune which data gets encrypted and control the energy consumption of an app, Li said. But it would take additional components to fully secure a partially encrypted file system, he said.

Most mobile devices also run apps in secure containers, using managed languages such as Java or the Common Language Runtime, to prevent unauthorized access to sensitive data and contain attacks by malicious apps. The team's testing showed that this technique increased power consumption by as much as 18 percent on Windows RT and 102 percent on Android.

Device and OS vendors use managed languages and other techniques to isolate data among different apps, Li said. Much of this storage virtualization can be moved into storage hardware by giving each application the illusion of a private file system, he said.

Another way to cut down on power consumption would be to shift the storage tasks now running on CPUs, including encryption and virtualization, onto an SoC (system on a chip) specifically for storage operations, Li said. A challenge there will be to make the SoC's encryption engine fast enough to keep up with applications' demands, he said.

Stephen Lawson covers mobile, storage and networking technologies for The IDG News Service. Follow Stephen on Twitter at @sdlawsonmedia. Stephen's e-mail address is stephen_lawson@idg.com

Follow Us

Join the New Zealand Reseller News newsletter!

Error: Please check your email address.

Tags consumer electronicsstorageMicrosoftUniversity of CaliforniaSan Diegomobile

Featured

Slideshows

Educating from the epicentre - Why distributors are the pulse checkers of the channel

Educating from the epicentre - Why distributors are the pulse checkers of the channel

​As the channel changes and industry voices deepen, the need for clarity and insight heightens. Market misconceptions talk of an “under pressure” distribution space, with competitors in that fateful “race for relevance” across New Zealand. Amidst the cliched assumptions however, distribution is once again showing its strength, as a force to be listened to, rather than questioned. Traditionally, the role was born out of a need for vendors and resellers to find one another, acting as a bridge between the testing lab and the marketplace. Yet despite new technologies and business approaches shaking the channel to its very core, distributors remain tied to the epicentre - providing the voice of reason amidst a seismic industry shift. In looking across both sides of the vendor and partner fences, the middle concept of the three-tier chain remains centrally placed to understand the metrics of two differing worlds, as the continual pulse checkers of the local channel. This exclusive Reseller News Roundtable, in association with Dicker Data and rhipe, examined the pivotal role of distribution in understanding the health of the channel, educating from the epicentre as the market transforms at a rapid rate.

Educating from the epicentre - Why distributors are the pulse checkers of the channel
Kiwi channel reunites as After Hours kicks off 2017

Kiwi channel reunites as After Hours kicks off 2017

After Hours made a welcome return to the channel social calendar last night, with a bumper crowd of distributors, vendors and resellers descending on The Jefferson in Auckland to kickstart 2017. Photos by Maria Stefina.

Kiwi channel reunites as After Hours kicks off 2017
Arrow exclusively introduces Tenable Network Security to A/NZ channel

Arrow exclusively introduces Tenable Network Security to A/NZ channel

Arrow Electronics introduced Tenable Network Security to local resellers in Sydney last week, officially launching the distributor's latest security partnership across Australia and New Zealand. Representing the first direct distribution agreement locally for Tenable specifically, the deal sees Arrow deliver security solutions directly to mid-market and enterprise channel partners on both sides of the Tasman.

Arrow exclusively introduces Tenable Network Security to A/NZ channel
Show Comments