Menu
3D graphene-like material could lead to super electronics

3D graphene-like material could lead to super electronics

The material offers vastly higher electron transfer rates, promising better-performing electronics

Researchers have discovered a material with a similar electronic structure to graphene that can exist in three dimensions and could lead to faster transistors and more compact, higher capacity hard drives.

The material, a form of the chemical compound sodium bismuthate, is called three-dimensional topological Dirac semi-metal (3DTDS).

An international team led by scientists from Oxford University, Diamond Light Source, Rutherford Appleton Laboratory, Stanford University and Berkeley Lab's Advanced Light Source discovered 3DTDS.

The researchers said the material could be used to make a hard drive that is higher density, faster and uses less energy, "for example turning a 1 terabyte hard drive into a drive that can store 10 terabytes within the same volume."

Graphene is a strong, conductive and flexible material that is made up of a single layer of carbon atoms connected in a pattern of hexagonal shapes. Graphene is stronger than a diamond and conducts electricity better than any previous material. But Graphene is also two dimensional, meaning it is produced in flat sheets about one million times thinner than a sheet of paper.

Unlike Graphene, 3DTDS allows electrons to be assembled in a collective to flow in all directions. More importantly, the electrons on the surface of the material remember their magnetic spin -- a property called magnetoresistance -- that allows data to be stored by reversing the polarity of a bit from positive to negative and vice versa.

Scientists have long searched for a natural 3D counterpart to 2D graphene, and while researchers have theorized about a 3D material with the same properties, the discovery confirms that the material exists. The research paper was published last week in the journal Science.

"The 3DTDS we have found has a lot in common with graphene and is likely to be as good or even better in terms of electron mobility - a measure of both how fast and how efficiently an electron can move through a material," Yulin Chen, of Oxford University's Department of Physics, said in a statement.

"In typical Giant Magnetoresistance Materials (GMR), the resistance changes by a few tens of percent and then saturates, but with 3DTDS it changes 100s or 1000s of percent without showing saturation with the external magnetic field," Chen said.

Now that researchers have proven the highly conductive 3D material exists, Chen said the race is on to find more such materials and their applications, "as well as other materials with unusual topology in their electronic structure."

Follow Us

Join the New Zealand Reseller News newsletter!

Error: Please check your email address.

Tags OxfordAppleData storageEmerging Technologieshardware systemsStanford University

Featured

Slideshows

Reseller News launches inaugural Hall of Fame lunch

Reseller News launches inaugural Hall of Fame lunch

Reseller News welcomed 2015 and 2016 inductees - Darryl Swann, Dave Rosenberg, Gary Bigwood, Keith Watson, Mike Hill and Scott Green - to the inaugural Reseller News Hall of Fame lunch, held at the French Cafe in Auckland. The inductees discussed how the channel can collectively work together to benefit New Zealand, the Kiwi skills shortage and the future of the industry. Photos by Maria Stefina.

Reseller News launches inaugural Hall of Fame lunch
Educating from the epicentre - Why distributors are the pulse checkers of the channel

Educating from the epicentre - Why distributors are the pulse checkers of the channel

​As the channel changes and industry voices deepen, the need for clarity and insight heightens. Market misconceptions talk of an “under pressure” distribution space, with competitors in that fateful “race for relevance” across New Zealand. Amidst the cliched assumptions however, distribution is once again showing its strength, as a force to be listened to, rather than questioned. Traditionally, the role was born out of a need for vendors and resellers to find one another, acting as a bridge between the testing lab and the marketplace. Yet despite new technologies and business approaches shaking the channel to its very core, distributors remain tied to the epicentre - providing the voice of reason amidst a seismic industry shift. In looking across both sides of the vendor and partner fences, the middle concept of the three-tier chain remains centrally placed to understand the metrics of two differing worlds, as the continual pulse checkers of the local channel. This exclusive Reseller News Roundtable, in association with Dicker Data and rhipe, examined the pivotal role of distribution in understanding the health of the channel, educating from the epicentre as the market transforms at a rapid rate.

Educating from the epicentre - Why distributors are the pulse checkers of the channel
Kiwi channel reunites as After Hours kicks off 2017

Kiwi channel reunites as After Hours kicks off 2017

After Hours made a welcome return to the channel social calendar last night, with a bumper crowd of distributors, vendors and resellers descending on The Jefferson in Auckland to kickstart 2017. Photos by Maria Stefina.

Kiwi channel reunites as After Hours kicks off 2017
Show Comments